Suppression Analysis of Positive Control Mutants of NifA Reveals Two Overlapping Promoters for Klebsiella pneumoniae rpoN

Ricardo A. Grande1, Brenda Valderrama1 and Enrique Morett1,2*

1Instituto de Biotecnología
Universidad Nacional Autónoma de México AP 510-3, Cuernavaca, Morelos México

2European Molecular Biology Laboratory, Meyerhofstrasse 1
69117, Heidelberg, Germany

Activation of gene expression relies on direct molecular interactions between the RNA polymerase and transcription factors. Eubacterial enhancer-binding proteins (EBPs) activate transcription by binding to distant sites and, simultaneously, contacting the σ54-holoenzyme form of the RNA polymerase (Es54). The interaction between the EBP and Es54 is transient, such that it has been difficult to be studied biochemically. Therefore, the details of this molecular recognition event are not known. Genetic and physical evidences suggest that the highly conserved C3 region in the activation domain of the EBP has major determinants for positive control and for the interaction with Es54. To further investigate the target of this region we searched for extragenic suppressors of some C3 region mutant derivatives of NifA. As a first step we mutagenized Klebsiella pneumoniae rpoN, the gene that codes for σ54. A mutant allele, rpoN1320, that suppressed two different NifA derivatives was obtained. Immunodetection of σ54 and transcriptional initiation studies demonstrated that the cause of the suppression was an enhanced expression of rpoN. A single point mutation was responsible for the phenotype. It mapped at the −10 region of an unidentified promoter, here denominated rpoNp1, and increased its similarity to the consensus. A second upstream promoter, denominated rpoNp2, was also identified. Its −10 region partially overlaps with the −35 region of rpoNp1. Interestingly, the promoter-up −10 mutation in rpoNp1 caused a reduction in the expression from rpoNp2, likely reflecting a stronger occupancy of the former promoter by the RNA polymerase at the expense of the latter. The presence of two overlapping promoters competing for the RNA polymerase implies a complex regulatory pattern that needs elucidation. The fact that increasing the concentration of σ54 in the cell can suppress positive control mutants of NifA adds further evidence for their direct interaction in the activation process.

© 1999 Academic Press

Keywords: second-site mutations; transcriptional activation; sigma factor; nitrogen fixation; enhancer-binding protein

Introduction

Activation of transcription in eubacteria results from the recruitment of the RNA polymerase holoenzyme to a promoter and/or by increasing the rate of the subsequent steps until the polymerase is engaged in elongation (reviewed by Ptashne & Gann, 1997). The function of transcription factors is to stabilize, by a direct and productive interaction with the RNA polymerase holoenzyme, one or more of the intermediate states (Roy et al., 1998). RNA polymerases are complex enzymes composed of at least five subunits, with a stoichiometry of α2ββ′σ (von Hippel et al., 1984). The well-characterized Escherichia coli housekeeping RNA polymerase holoenzyme (Es70) provides a paradigm for understanding how transcription factors interact with different subunits to activate transcription.

Abbreviations used: EBP, enhancer-binding protein.
E-mail address of the corresponding author: emorett@ibt.unam.mx

© 1999 Academic Press
Depending on the class of transcription factor and type of promoter, direct contacts between the activator protein and each of the RNA polymerase subunits, including two different domains of the α subunit, have been detected (reviewed by Busby & Ebright, 1997; Heyduk et al., 1996; Greiner et al., 1996).

In contrast to Eσ70, activation of promoters recognized by the σ54-containing holoenzyme (Eσ54) is independent of recruitment of the RNA polymerase to a promoter. In the absence of transcription factors Eσ54 binds to its cognate promoters and forms stable, but inactive, closed complexes (Buck & Cannon, 1992; Popham et al., 1989). These complexes are only isomerized to the initiation competent open promoter complexes by direct interaction with activators of the enhancer-binding protein (EBP) family (Popham et al., 1989; Merrick, 1993; Lee et al., 1993). The conformational changes leading to transcription initiation are dependent on nucleoside triphosphate hydrolysis by the EBP itself (Weiss et al., 1991; Berger et al., 1994).

The interaction determinants of Eσ54 and the EBP are largely unknown. It has been suggested that the EBP contact the polymerase holoenzyme through σ54 (Morett & Segovia, 1993), and chemical protein cross-linking studies indicated that the activator lies in close proximity to σ54 and to the β subunit (Lee & Hoover, 1995). However, these studies are not sensitive enough to determine the actual regions involved in protein-protein interactions.

Mutation and deletion analyses have allowed functions to be assigned to different regions of σ54. The central part of the protein is involved in RNA polymerase binding, while mutations in the COOH terminus specifically affect promoter-DNA interactions (Coppard & Merrick, 1991; Guo & Gralla, 1997; Cannon et al., 1995). The first 50 highly conserved residues at the NH2-terminal part play a central role in the response to transcription factors, and some mutations that “bypass” the requirement of activator proteins to initiate transcription have been mapped to this region (Syed & Gralla, 1997). Thus, this region is the most likely target of the activator proteins.

The EBPs are modular regulators consisting of three different functional domains, where their central and COOH-terminal domains have a common origin for the whole family, whereas the NH2-terminal domain is specific for each functional subgroup (Morett & Segovia, 1993). Mutation and deletion analyses have demonstrated that the activation determinants are located within the conserved central domain while the DNA-binding determinants are located at the COOH-terminal domain (Huala et al., 1992; Morett et al., 1988; Huala & Ausubel, 1989).

Positive control mutants of the EBP NtrC, DctD and NifA have been isolated (North et al., 1996; Wang & Hoover, 1997; González et al., 1998). In all cases the mutations map at the C3 region of the central domain. This region is highly conserved among the members of the EBP family (Morett & Segovia, 1993), and in a structural model of the central domain it has been proposed to be a surface-exposed loop (Osuna et al., 1997). Thus, the C3 region fulfills the requirements for protein-protein interaction.

Here we describe the isolation of a rpoN mutant able to partially suppress the positive control phenotype of two different C3 region mutants of NifA by enhancing the intracellular concentration of σ54. Analysis of this mutant uncovered the existence of two overlapping promoters for the expression of rpoN in K. pneumoniae.

Results and Discussion

In this work we followed a classical second-site or extragenic suppressor search strategy in an attempt to elucidate transient protein-protein interactions in the activation of Eσ54 by the EBP. This strategy is based on the premise that within a macromolecular assembly a reduced function caused by mutation in one member can be compensated by modification of a second member. This compensation can be allele-specific, by restoring critical contacts required for the complex assembly, thus revealing an intimate protein-protein interaction. Alternatively, non-allele-specific suppressors may compensate indirectly the original defect by enhancing the assembly efficiency or the overall stability of the complex (Hartman & Roth, 1973).

Isolation of a NifA positive control suppressor allele of rpoN

As a first step to identify the component(s) of the RNA polymerase holoenzyme that respond to the activator protein, we searched for alleles of σ54 able to suppress positive control mutants of NifA. We previously reported two NifA C3 region mutants, NifA<sup>E298D</sup> and NifA<sup>T308S</sup> that are specifically affected in positive control (González et al., 1998). The conservative nature of the amino acid substitutions and the residual activity they presented made them suitable candidates for the search of extragenic suppressors. Samples of chemically mutagenized pMM70 plasmid, carrying the K. pneumoniae rpoN gene, were electroporated into the E. coli ΔrpoN TH1 strain harbouring a K. pneumoniae nifH-lacZ fusion in plasmid pRT22 and either the NifA<sup>E298D</sup> or the NifA<sup>T308S</sup> mutant proteins (for strains and plasmids, see Table 1). Transformants were spread onto LB plates supplemented with the chromophore X-gal. Putative suppressors showing an enhanced blue color phenotype were isolated, subcultured under microaerobic conditions and their β-galactosidase activity was determined. Only one clone, isolated as partial suppressors of the NifA<sup>T308S</sup> mutant, showed a consistent enhanced nifH-lacZ expression (Figure 1).
To determine if the enhanced nifH-lacZ expression was due to a mutation in rpoN, plasmid pMM70 of clone 1320 (hereinafter called p1320) was segregated into strain JM109 and transformed with the p1320 plasmid, indicating that the mutation(s) in plasmid p1320 is/are not deleterious to the activity of the wild-type NifA (Figure 1).

Nucleotide sequence and product characterisation of plasmid p1320

In order to identify the mutation(s) responsible for the phenotype of plasmid p1320, the nucleotide sequence of the entire rpoN gene and 150 nucleotides of its regulatory region was determined. Only two G to A transitions were found, one was a silent substitution in the fifth codon of the protein, while the other was located 43 nucleotides upstream from the initiation codon (Figure 4(a), below). The location of the latter mutation suggested that a differential regulation of rpoN might be responsible for the phenotype. To assess this, we determined the relative concentration of σ54 protein in the cell by immunodetection. Clearly, the TH1/p1320 strain contained at least twice the amount of the σ54 protein than the TH1/pMM70 strain (Figure 2(a)).

The results shown above suggest that an increased concentration of σ54 can partially suppress the positive control phenotype of the NifA C3 region mutants. To evaluate the suppression potential of accumulated σ54, we overexpressed the wild-type rpoN gene. Plasmid pMM38 harbours an rpoN gene cloned under the control of a ptac promoter. As shown in Figure 2(b), induction of rpoN in pMM38 by addition of 1 mM IPTG yielded approximately the same amount of σ54 than plasmid p1320. Accordingly, when induced, activation of the nifH-lacZ fusion by either the NifA E298D or the NifAT308S proteins reached similar levels than with the p1320 plasmid (Figure 2(c)).

In conclusion, the partial suppression of the positive control phenotype of the NifA mutants resulted from an increased amount of σ54 protein in the cell. This is likely caused by a transcriptional regulatory effect of the 1320 mutation. This observation is the first genetic evidence in support of a direct interaction between an EBP and σ54.

Mapping of the rpoN transcriptional start site

Merrick and co-workers proposed the existence of a putative σ54-dependent promoter from 69 to 100 nucleotides upstream of the translational initiation codon of the K. pneumoniae rpoN gene (Merrick & Gibbins, 1985). Mutation 1320 is located 26 nucleotides downstream from the putative promoter, far apart to directly influence promoter function. Thus, the mutation could alter the mRNA stability or another expression-enhancing mechanism at the transcriptional level. To test these hypotheses we carried out a comparative analysis of the mRNA levels and the transcriptional start sites of the wild-type and 1320 rpoN alleles.

Figure 1. Transcriptional activity of the rpoN and rpoN1320 alleles. β-Galactosidase activity was determined in the TH1 strain harbouring the K. pneumoniae nifH-lacZ reporter plasmid pRT22 plus plasmids coding for the wild-type or mutant NifA proteins, as indicated. Values are the mean of three independent experiments with standard deviation shown. For the activation assays microaerobic cultures were inoculated with a 1:100 dilution of a saturated aerobic culture in 1.5 ml of fresh LB media plus glutamine and antibiotics in a 1.5 ml Eppendorf tube and shaken overnight at 30 °C. Samples of the microaerobic cultures were assayed for their β-galactosidase activity as reported (Miller, 1972). To generate the K. pneumoniae rpoN mutant library 1 μg of plasmid pMM70 was treated with 100 mM hydroxylamine chloride in 100 mM phosphate buffer (pH 6.0) for 18 hours at 37 °C. After removing the hydroxylamine chloride by dialysis against 10 mM Tris-HCl (pH 7.5), the DNA was concentrated by precipitation, and samples of 50 ng were electroporated into strain TH1 harbouring plasmids pRT22 and pM1S or pM1D. Transformed cells were spread on LB plus antibiotics and X-gal. After overnight incubation at 30 °C, plates were stored at 4 °C until a blue colour developed. A library of about 50,000 colonies was screened for dark-blue colour. 

To determine if the enhanced nifH-lacZ expression was due to a mutation in rpoN, plasmid pMM70 of clone 1320 (hereinafter called p1320) was segregated into strain JM109 and transformed back into the ΔrpoN strain TH1 harbouring the pRT22 plasmid and either the wild-type NifA, the NifA E298D or the NifA T308S proteins. As shown in Figure 1, activation of nifH-lacZ expression by the NifA E298D and NifA T308S proteins was increased four- and fivefold, respectively, in the presence of the p1320 plasmid, compared to the wild-type pMM70. Since both the NifA E298D and NifA T308S mutants were partially suppressed, the effect was not allele-specific. The wild-type NifA protein acti-
As shown in Figure 3 (lane 2), two different transcripts were detected by primer extension experiments from the wild-type rpoN gene. The first transcript started 62 nucleotides upstream from the translational start site, seven nucleotides downstream from the promoter element proposed by Merrick & Gibbins (1985). We named this promoter rpoNp2. The second transcript started at two contiguous positions 34 and 35 nucleotides upstream from the translational start site. This transcript starts 27/28 nucleotides downstream from the first transcriptional start and we named this promoter rpoNp1. None of these transcripts were observed when total RNA from plasmid-less ΔrpoN strain TH1 was extended (Figure 3, lane 3). Hence, the transcriptional start mapping experiments revealed the existence of two promoters for the expression of K. pneumoniae rpoN in E. coli.
Two Overlapping Promoters for K. pneumoniae rpoN

Two overlapping promoters for rpoN in Klebsiella pneumoniae

The two rpoN promoters described here have low conservation, for rpoNp2 only four positions at each of the −10 and −35 regions match the consensus promoter sequence (Figure 4(b)). For rpoNp1 only three positions at each region match the consensus although this promoter presented the “extended −10 element”, a TG dinucleotide upstream of the −10 hexamer (Figure 4(a)) (Keilty & Rosenberg, 1987). Likely, the presence of this extended element might contribute to the fourfold higher level of expression observed from this promoter compared to rpoNp2 (Figure 3, lane 2). Promoter rpoNp2 is comprised of sequences TTGAAG-N20-TATCTT (Figure 4(b)). The TT dinucleotide at the beginning of the −10 region of this promoter also forms part of the TTGGG −35 hexanucleotide of rpoNp1. Thus, both promoters partially overlap each other.

The fact that the promoters share at least two residues implies that they must compete for the binding of the RNA polymerase. This may account for the reduced expression from rpoNp2 observed with the rpoN1320 allele (Figure 3, lane 1). We interpret this as a result of a stronger RNA polymerase occupancy of rpoN1320p1, at the expense of rpoNp2, caused by the 1320 mutation that increased the similarity of this promoter to the consensus. We have previously reported a similar competition effect for the overlapping fixRnifA promoters of Bradyrhizobium japonicum (Barrios et al., 1995, 1998).

The nucleotide sequence of the upstream regulatory region of the K. pneumoniae, Salmonella typhimurium, S. typhi and E. coli rpoN genes is identical up to the −35 element of the rpoNp1 promoter, after this position the sequence of K. pneumoniae starts to diverge (Figure 4(a)). Interestingly, E. coli and S. typhi do not have a recognizable rpoNp2 −35 promoter region, thus, it is likely that this promoter only exists in K. pneumoniae. In support of this interpretation Kustu and collaborators reported a single transcriptional start site for S. typhimurium rpoN (Popham. et al., 1991). The proposed promoter corresponds to K. pneumoniae rpoNp1 (Figure 4(a)).

Why K. pneumoniae has two promoters controlling the expression of rpoN while the other closely related enterobacterial species have only one? It is likely that the presence of the additional promoter

Figure 3. Transcriptional start site mapping of rpoN and rpoN1320 mRNA. The DNA sequence ladder (from p1320) is shown in lanes C, T, A, and G. Oligonucleotide B2 (see below) was used for dideoxy-sequencing and for the primer extension analyses (lanes 1 to 3). Primer extension of total RNA isolated from TH1 harbouring p1320 (lane 1), pMM70 (lane 2) or without plasmids and for the primer extension analyses (lanes 1 to 3). Primer B2 (GGCTTAGCCTAAGTGCAAACCTTGC) was used for dideoxy-sequencing on a Molecular Dynamics ImageQuant software.

When total RNA from strain TH1 harbouring plasmid p1320 was extended, we observed the same transcripts as with the wild-type gene (Figure 3, lane 1). Interestingly, the level of expression from rpoNp1 was significantly higher (60%, see the legend to Figure 3) with the rpoN1320 allele than with the wild-type allele, while expression from rpoNp2 was slightly lower (24%). Thus, the intracellular accumulation of σ54 caused by the rpoN1320 mutation was due to an overexpression from rpoNp1. It is relevant to notice that the G to A transition in the rpoN1320 allele lies within rpoNp1 (Figure 4(b)), increasing its similarity to the consensus −10 sequence (TATAAT) (Hawley & McClure, 1983; Kumar et al., 1993). Thus, rpoN1320 behaves as a typical promoter-up mutation.

Two overlapping promoters for rpoN in Klebsiella pneumoniae

The two rpoN promoters described here have low conservation, for rpoNp2 only four positions at each of the −10 and −35 regions match the consensus promoter sequence (Figure 4(b)). For rpoNp1 only three positions at each region match the consensus although this promoter presented the “extended −10 element”, a TG dinucleotide upstream of the −10 hexamer (Figure 4(a)) (Keilty & Rosenberg, 1987). Likely, the presence of this extended element might contribute to the fourfold higher level of expression observed from this promoter compared to rpoNp2 (Figure 3, lane 2). Promoter rpoNp2 is comprised of sequences TTGAAG-N20-TATCTT (Figure 4(b)). The TT dinucleotide at the beginning of the −10 region of this promoter also forms part of the TTGGG −35 hexanucleotide of rpoNp1. Thus, both promoters partially overlap each other.

The fact that the promoters share at least two residues implies that they must compete for the binding of the RNA polymerase. This may account for the reduced expression from rpoNp2 observed with the rpoN1320 allele (Figure 3, lane 1). We interpret this as a result of a stronger RNA polymerase occupancy of rpoN1320p1, at the expense of rpoNp2, caused by the 1320 mutation that increased the similarity of this promoter to the consensus. We have previously reported a similar competition effect for the overlapping fixRnifA promoters of Bradyrhizobium japonicum (Barrios et al., 1995, 1998).

The nucleotide sequence of the upstream regulatory region of the K. pneumoniae, Salmonella typhimurium, S. typhi and E. coli rpoN genes is identical up to the −35 element of the rpoNp1 promoter, after this position the sequence of K. pneumoniae starts to diverge (Figure 4(a)). Interestingly, E. coli and S. typhi do not have a recognizable rpoNp2 −35 promoter region, thus, it is likely that this promoter only exists in K. pneumoniae. In support of this interpretation Kustu and collaborators reported a single transcriptional start site for S. typhimurium rpoN (Popham. et al., 1991). The proposed promoter corresponds to K. pneumoniae rpoNp1 (Figure 4(a)).

Why K. pneumoniae has two promoters controlling the expression of rpoN while the other closely related enterobacterial species have only one? It is likely that the presence of the additional promoter

When total RNA from strain TH1 harbouring plasmid p1320 was extended, we observed the same transcripts as with the wild-type gene (Figure 3, lane 1). Interestingly, the level of expression from rpoNp1 was significantly higher (60%, see the legend to Figure 3) with the rpoN1320 allele than with the wild-type allele, while expression from rpoNp2 was slightly lower (24%). Thus, the intracellular accumulation of σ54 caused by the rpoN1320 mutation was due to an overexpression from rpoNp1. It is relevant to notice that the G to A transition in the rpoN1320 allele lies within rpoNp1 (Figure 4(b)), increasing its similarity to the consensus −10 sequence (TATAAT) (Hawley & McClure, 1983; Kumar et al., 1993). Thus, rpoN1320 behaves as a typical promoter-up mutation.
reflects distinct requirements of σ^54 in the cell. The most striking physiological difference between, *E. coli*, *S. typhi*, *S. typhimurium* and *K. pneumoniae* is that the latter bacteria fixes nitrogen. For this process more than 20 gene products are required. The high level of expression of these genes, transcribed by Es^54, certainly demands an enhanced amount of this holoenzyme. The presence of two different promoters may contribute to generate, in a tightly regulated fashion, the levels of Es^54 required for nitrogen fixation. We are currently investigating the possible differential regulation of rpoN expression under different growth conditions.

**Conclusions**

The experiments presented here show that increasing the amount of σ^54 in the cell, by altering its expression either by promoter induction or by a promoter-up mutation, results in an enhanced ability of certain positive control mutants of NifA to

---

**Figure 4.** Comparison of the nucleotide sequence of *K. pneumoniae* (Kpn), *E. coli* (Eco), *S. typhi* (Stp) and *S. typhimurium* (Stm) rpoN promoter regions. (a) rpoNp1 and rpoNp2 promoters −35, ‘‘extended −10’’ and −10 elements are in open boxes. The start site for each K. pneumoniae rpoN transcript is marked with an arrow, being the longest transcript identified as +1 and the shorter transcript as +1' and +1''. Mutation 1320 (G to A) is indicated within the rpoNp1 promoter −10 element. Putative ribosome-binding sites are overlined. A single transcriptional start site has been reported for S. typhimurium, which coincides with transcript +1' of rpoNp1, and is marked with an arrow as +1 (Popham et al., 1991). This promoter has also been proposed for E. coli (Jones et al., 1994). rpoNp2 was previously proposed for K. pneumoniae (Merrick & Gibbins, 1985). (b) Comparison of the nucleotide sequences of rpoNp2, rpoNp1, and rpoNp1 (1320) promoters with the consensus σ^70-dependent sequence (Hawley & McClure, 1983).

---

**Table 1.** Strains and plasmids

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant genotype and characteristics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM109</td>
<td>F traD36 lac' Δ(lacZ)M15 proA^B'/+c14^- (McrA^-) Δ(lac-proAB) thi gyrA96 (Nal') endA1 hsdR17 (rK'mK') relA SupE44 recA1</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>TH1</td>
<td>thi endA hsr ΔlacU169 hutC-λle, rpoN</td>
<td>T. Hunt</td>
</tr>
<tr>
<td>B. Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRT22</td>
<td>pACYC177 based nifH-lacZ translational fusion, Cm'</td>
<td>Tuli &amp; Merrick (1988)</td>
</tr>
<tr>
<td>pJ7511</td>
<td>pRJ7517 derived pcat''nifA fusion of <em>B. japonicum</em>, Tc'</td>
<td>Fischer &amp; Hennecke (1987)</td>
</tr>
<tr>
<td>PWKSI30</td>
<td>Multipurpose low-copy number vector, Km'</td>
<td>Wang &amp; Kushner (1991)</td>
</tr>
<tr>
<td>pM1-k</td>
<td>pWKS130 with KpnI site removed by filling in and <em>B. japonicum</em> nifA from pRJ7511 cloned as BamHI-PstI, Km'</td>
<td>This work</td>
</tr>
<tr>
<td>pM1D</td>
<td>pWKS130 derived with <em>B. japonicum</em> nifA^{26nd} cloned as BamHI-PstI, Km'</td>
<td>This work</td>
</tr>
<tr>
<td>pM1S</td>
<td>pWKS130 derived with <em>B. japonicum</em> nifA^{108nd} cloned as BamHI-PstI, Km'</td>
<td>This work</td>
</tr>
<tr>
<td>pMM38</td>
<td>pMM40 based <em>K. pneumoniae</em> proN expressed from ptc, Cb'</td>
<td>Austin et al. (1987)</td>
</tr>
<tr>
<td>pMM70</td>
<td>pTZ19R derivative with <em>K. pneumoniae</em> rpoN expressed from its own promoter</td>
<td>M. Merrick</td>
</tr>
</tbody>
</table>

Plasmids were maintained in strain JM109 and electroporated into strain TH1 for the expression assays. Strain TH1 was grown in Luria-Bertani (LB) medium plus 0.1 mM glutamine. Antibiotics were added when needed at the following final concentrations: 200 μg/ml ampicillin (Am), 30 μg/ml kanamycin (Km), 20 μg/ml chloramphenicol (Cm) 15 μg/ml tetracycline (Tc). X-gal was used at 20 μg/ml.
activate transcription. We have previously proposed that these NifA mutants, which map in a region predicted to be surface-exposed (Osuna et al., 1997), are most likely defective in interacting with Erσ54 (González et al., 1998). A greater amount of σ54 in the cell likely increases the probability of interaction with the defective NifA proteins and, therefore, to form the macromolecular assembly required for gene expression. Although this observation favours a direct interaction between NifA and σ54 we cannot rule out that other critical contacts with the RNA polymerase can take place. Allele-specific suppressor mutants of the NifAT308S, that mapped at the NH2 terminus of NifA-rpoN expression of the two partially overlapping promoters for the suppressor mutants reported here revealed the published results). Nevertheless, the search of the interaction favours a direct interaction between NifA protein and K. Juárez, G. Cabeza and E. Mata for antisense production. E.M. thanks the support from DGAPA and CONACYT for a sabbatical leave. E.M. is a recipient of DGAPA and CONACyT scholarships.

**Acknowledgements**

We thank G. Soberón, J.L. Puente and G. Dávila for fruitful discussions; M. Buck for the gift of pure Δσ54 protein and K. Juárez, G. Cabeza and E. Mata for antibody production. E.M. thanks the support from DGAPA and CONACYT for a sabbatical leave. E.M. is a recipient of an Alexander von Humboldt fellowship. This work was supported by CONACyT (G0030-N9608 and 25661-N) and PAEP 202314. R.G. was a recipient of CONACyT and DGEP scholarships.

**References**


Edited by J. Karn

(Rceived 22 June 1999; received in revised form 27 September 1999; accepted 27 September 1999)